

* Peproductions supplied by EDRS are the best that can be made
from the original document.

CONNECTICUT•STATE BOARD OF EDUCATION

SỤMMARY AND INTERPRETATIONS

CONNECTICUT STATE BOARD OF EDUCATION

John E. Toffolon, Chaíman
June K. Goodman, Vice Chairwoman :
Dayson D. DeCourcy
Roberto Fuentes
Rose B. LaRose
Rose Lubchansky
Julia Rankin
Gail H. Stockham
James J. Szerejejko
Mic̣hael Usdañ

Mark R. Shedd

Theodore S. Sergi

Riverton

- Danbury

West Hartford
Stamford
Putnam
New London
Warrenville
Stratford
Hartford

- Commissioner
) Board of Higher Education (Ex Officio)

Secretary and Commissioner of Education

Assistant Secretary and Deputy Cormissioner of Education

- CONNECTICUT STATE DEPARTMENT OF EDUCATION

Division of Educational Administration Joe R: Gordon
Associate Commissioner
Bureau of Research Planning and Evaluation
Pascal D. Forgione, Jr.; Chief
Assessment and Testing Unit George D. Kinkade, Consultant

Division of Elementary and Secondary Education
Robert I. Margolin Associate Commjssioner

Bureau of Curriculum and

- Staff Development
${ }^{\circ}$ Betty J. Sternberg, Chief
Curriculum Ünit
Steven Leinwand, Consultant

$\therefore \quad .$| Mathematics |
| :---: |
| $1979-80$ |

Prepared by:
Martin S. Wolfe
Mathematics Education Center
School of Education
s The Uniiversity of Connecticut

Prepared for:
Connecticut State Board of Education Bureau of Research, Planning and Evaluation

November, 1980

Annual Report Series: BRPE-81-3B

table of contents

Page

Page

ACHIEVEMENT COMPARISONS AMONG VARIOUS GROUPS OF CONNECTI'CUT STUDENTS 18
Regton. 111
"S1ze of Community 18
COMPARISONS OF CONNECTICUT WITH THE NATION AND THE NORTHEAST. 21
Introduction 21
Results for 9-Year-01ds/Grade 4 22
Results for 13-Year-01ds/Grade 8 22
Results for 17-Year-0lds/Grade 23
.
ACHIEVEMENT ACROSS AGE GROUPS 27
COMPARISONS BETWEEN CAEP-2 AND CAEP-1 30
Introduction 30
Results for 9-Year-ulds 30
Results for 13-Year-01ds 30
Results for 17-Year-01ds 31
STUDENT QUESTIONNAIRE RESULTS
AND COMPARISONS 35
Responses to Questionnaire Items 35
Achievement on Total Test by Questionnaire Response Groups 40
PART IIIINTERPRETATIONS AND RECOMMENDATIONS
INTRODUCTION 44
Discussion. 44
General Kecommendations 45

APPENDIX

MATHEMATICS ITEM PERFORMANCE BY VARIOUS GROUPS
Table rage
1: CAEP Goal Areds, Objectivan, aind Item Numbers for 9 -Year-0lds. Matherilatics, 1979-80 1
2: CAEP Goal Areas, Objectivas, and I tem Numbers for 13-Year-01ds, Mathematics. 1979-80 8
3: CAEP Goal Areas, Objactives: and Item Numbers for 17-Year-01ds, Mathematics. 1979-80 9
4: Comparison of Achievement Across Age Groups on Shared Items by Coal Areas. 8
5: Responses of 9 -Year-0lds to Uuestionnaire Items Reported In Percentages. 37
6. Responses of 13-Year-01ds to Questiomalru Items Reported in Percentages 38
7: Responses of 17-Year-01ds to Questionnalre Items Reported in Percentages 39
8: Achtevement on Total Test by Reporting Groups 41

Flyure Page
1: Achlovemant un hioal Ardas by Aga Groun 14
:: Achleventant on (Ib,jactivas: Y-Yadrolds 15
J: Achlevanent on Objectives: 1 I -Year-Olds 10
4: Achlevament on (1hjactivas: $1 /$ Year-0)lds $1 /$
6: Achlevenment on rotal test by Regton 11
6: Achlevement on lotal last by Slie of Commonlty 20
1: Performances by 9 -Year-()lds on NALP-2 Items. Connecticut, Nation. Northast 24
8: Perfonmances by IJ-Year-()|ds on NALP-Z Items. Comecticut, Nation, Northeast. 24
9: Performances by 17-Year-0lds on NAEP-2 Items, Connecficut, Nation, Northeast. 26
10: Performances by 9 -Year-0lds on Items Conmon to CAEP 2 and CAEP-1 by goal Area 32
11: Performances by 13-Year-0lds on I tems Common to CAEP-2 and CAEP-1 by Goal Ared. 33
12: Perfonmances by 17-Year-Olds on Items Common to CAEP-2 and CAEP-1 by Goal Area. 34

PART I: THE CAEP MATHEMAIICS PROGRM

INTROLLCT LON

Dackuround and Purposo

1

Tha Cominecticut Assessiment of Lducathanal Prograsa (catp) In Mathematics. 1979 bu, was the accund assessiment of mathanatical knowledge. skills. and atitudas conducted as part of cumacticut's continuing latp program. Tha pravious mathomatles dssassmant was conducted in 1970-77, Both

 olds In grade 11 . The CAEP proyram. Including the 1979 witionathanatica assassment, has been medeled after the National Assessment of Educational Prograss (NAtP).

The 19/3-80 mathematics assessment was conducted by the Mathematice Education Conter and the Bureau of tacatfonal Research. School of Education of tho University of Conmecticut (liconn) under contract to the Commecticut State Departmant of Lducation (Csint), A Statawfie Mathematics Advisory Commitee (SIMC) consistimg of Connectlcut educators worked with UConn and cSuL throuyhout the project.

The goals of the $1979-80$ mathematics assessment were:
(1) to determine the performance in mathenmatics of Connecticut public school students from the state as a whole. from various reglons of the state, and from varlous community sizes:
(2) to compare the 1979-80 performance with the 1976-77 performance;
(3) to compare the 1979-80 parformanca of Connecticut students with that of students in the Northeast and in the pation;
(4) to provide performance data useful in making curriculum and instruction decisions at both the state and local levels;
(5) to encourage local school districts to adopt objective-referenced assessment instruments and procedures for evaluation and planning.

The Statewide Mathemar cs Advisory Committee, in conjunction with CSDE and UConn, designed three objective-referenced tests, one for each age/ grade level in.the assessnent. Test items were selected to measure the various objectives developed by SMAC. Wherever appropriate, items from the 1976-77 CAEP test and items from NAEP materials were included. In addition, SMAC developed student questionnaires to be administered with the tests.

The $19 / 9-80$ assessment, in ahilton to cesciny the stefomaje somple. prowided "Lucal Oftlun" la which lacal discolets catidelect ta
 develupan far the statemiae sampla. Uuer itadia students from is
 chated in the local dithun fhaza of the azacament
lie ly/a/f At: Malliematlis Aspessiment

Ihe NAII Mathenallis Assesment

Whe CAlp mathematles assessment was designed as an adaplation of the model used at the matlonal level by NAtI. lhe trat NAlP mathematicy profect ("NAtP-1") was conducted in 19/2-/3. and a second ("NALP 2") (II 19]-7d.

NALP has conducted both mathematics assessments with samples consisting of 9 -year-olds. 13-year-olds. and $1 /$ yaar-olds from across the United states participating. The samples ware selected in such a way that tha results of the assessments could be genaraliad to the national populations of the participating age groups. Thirteen-year-olds were assessed by NAEP toward the beginning of the sthool year; 9-yearmolds at about mid-year; and $1 /$-year-olds toward the end of the school year. NAtp reported results for various groups within the national population Including groups defined by sex, geographic region of the country, and the size of the community in which a school is located.

A number of NAEP-2 items were included on the CAEP-2 instruments in order to provide data for comparison of the performance of connecticut students with that of students in the Northeast and in the nation. Such comparisons are presented in Part II of this report.

等
A sample of oconnecticut students atieach of the three age/grade levels - was tested. The CAEP program for ' $1979-80$ included assessments in mathematics and in science. In an effort to minimize interruptions caused by assessment procedures to local school programs, it was agreed among CSDE, UConn, and National Evaluation Systems (contractor for the science assesssment) that National Evaluation Systems would draw the samples for both assessments in such a manner as to assure that any given school would nöt be selected for both samples- The sampling procedure and all subsequent procedures were designed to protect the anomymity of -all students, schools, and school districts participating in the statewide sample.

At each age/grade level, students were randomly selected for the sample. of the basis of their school's location in Connecticut and the size of the town in which their school is located. Each geographic region and each size of community category was represented in a particular age/ grade sample proportionately to its representation in the state population of that age/grade group.

The map below shows the division of the state into regions based on the six Connecticut Regional Educational Services Centers. Each region is identified in the key below the map.

Region 1: Regional Educational Services Concepts (through) Unified Effort (RESCUE)
Region 2: Cooperative Educational Services (CES)
Region 3: Capital Region Educational Council (CREC)
Region 4: Area Cooperative Educational Services (ACES)
Region 5: Project LEARN (LEARN)
Region 6: Northeast Area Regional Educational Services (NARES)

The sizes of community for Connecticut were defined as follows:
1-Big Cities. Towns of mare than 100,000 population
2 - Fringe Cities. Towns whose borders are contigtous with Big Cities and whose populations exceed 10,000
3 - Medium Cities. Towns of more than 25,000 population which are not Big Cities or Fringe Cities
4 - Smaller Cities. All other towns
The number of students'who participated in the statewide assessment was: .
2505 nine-year-olds in grade 4
2575 thirteen-year-olds in grade 8
2440 seventeen-year-olds in grade 11
The number of schools represented in the sample was:

```
115 schools at the 4th grade level
    93 schools at the 8th grade level
    74 schools at the llth grade level (including 8 vocational-
        techñical schools)
```

The total number of school districts represented in the sample was 115.

THE ASSESSMENT INSTRUMENTS

The Statewide Mathematics Advisory Committee first developed goal areas and objectives for each age/grade level and then three objectivereferenced tests based on these goals and objectives. The objectives represent those mathematical concepts and skills judged to be of highest priority for each grade level. No attempt was made to include all.concepts and skills typically included in the experiences of students at each grade level. Goal areas, objectives, and test item numbers for each of the three age/grade levels are presented in Tables l-3.

Items were selected to provide for various comparisons. First priority was given to items from the CAEP-1 (1976-77) test. In addition some NAEP-2 (1977-78) items were selected by SMAC. In cases where appropriate items were not available from either CAEP-1 or NAEP-2, new items were prepared by UConn for SMAC's approval. Some items were designated to be administered to more than one age group. At least three items were used for each age 9 objective and at least four items were used for each age 13 and each age 17 objective.

Sources of mathematics items were as follows:

Age 9/Grade 4

$$
\begin{aligned}
& \text { CAEP-1 • } 36 \\
& \text { NAEP-2 } \\
& 11 \\
& \text { CAEP-2 ("new" items) } 13 \\
& \text { Total mathematics items } 60 \\
& \text { (} 8 \text { of the CAEP-1 items were originally NAEP-1. items.) - } \\
& \text { Age 13/Grade } 8 \\
& \text { CA'EP-1 } 34 \\
& \text { NAEP-2 } 17 \\
& \text { CAEP-2 ("new" items) - } 19
\end{aligned}
$$

Age 17/Grade 11
$\begin{array}{ll}\text { CAEP-1 } & 41 \\ \text { NAEP-2 } & 13\end{array}$

$$
Q
$$

CAEP-2 ("new" items)
Total mathematics items
69
(11 of the CAEP-1 items were originally NAEP-1 items.)
Field tests were conducted for each assessment instrument to gather item data and to test the appropriateness of the administrative process. Several hundred students at each grade level participated in the field tests. The field tests were administered under the same conditions as those planned for the statewide assessment. The field tests confirmed the judgement of SMAC as to the reliability of the selected items and the soundness of the administrative procedures.

Questionnaires were developed for the three age/grade levels in order to provide data on the attitudes of various groups of students toward mathematics and to identify characteristics of students which might prove useful in local and/or statewide policy decisions. In order to provide for comparisons, some CAEP-1 items were selected for the CAEP-2 questionnaire and some NAEP-2-1tems were modified slightly and included. Results of the student questionnaires and comparative data are provided later in this report.

Sources of questionnaire items were as follows:
Age 9/,Grade 4

$$
\begin{aligned}
& \text { CAEP-1 } \\
& \text { NAEP-2 } \\
& \text { CAEP-2 ("new" items) } \\
& \text { Tọtal questionnaire items }
\end{aligned}
$$

Age 13/Grade 8

- CAEP-1
NAEP-2

CAEP-2 ("new" items)
Total questionnaire items
Age

GOAL AREA.

OBJECTIVE

1. Math Concepts
1.1. The student deminstrates an undérstanding of "place values for whole numbers.
1.2 The student demonstrates an understanding of ordering of whole numbers.
1.3 The student demanstrates an understanding of fractional notation:
2. Computation
2.1 The student demonstrates the ability to add whole numbers.
3. 2 The student demonstrates the ability to subtract whole numbers'.
2.3 The student demonstrates the ability to multiply whole numbers with one digit multipliers.
2.4 The student demonstrates the ability to divide whole numbers with one digit divisors.
4. Measurement
3.1 The student demonstrates the ability to convert U.S. currency to equivalent units.
3.2 The student demonstrates the ability to identify and compute time.
3.3. The student demonstrates a working knowledge of linear, units of U.S. and metric measure.
5. Tables and Graphs
4.1 The student demonstrates the ability to interpret data from tables and graphs.
6. Application/Problems
5.1 The student demonstrates the ability to solve word problems.
7. Geometry
6.1 The student demonstrates the ability to identify and name plane geometric figures.

TEST' ITEM NUMBER

$30,36,42,46,53$
19, 32, 38; 56
20, 29, 32, 55
$1,5,8,10, .11$
2, 4, 7, 12, 16
3,' 9, 13, 17
$6,14,15,18$
$34,37,50,57$
$33,40 \times 47,54$
$35,41,43,49$,
51,58
$44,45,48,60$

21, 22, 23, 24,
25, 26, 27, 28
31, 52, 59

TABLE 2
CAEP GOAL AREAS, OBJECTIVES, AND ITEM NUMBERS FOR 13-YEAR-OLDS, MATHEMATICS,-1979-80

GOAL AREA

OBJECTIVE
 TEST ITEM NUMBER

1. Math Concepts
1.1 The student demonstrates an understanding of $\quad 21,32,48,55$ nümbers in fraction, decimal and percent form.

51, 56; 57; 62
1.2 The student demonstrates the ability to
order decimals, fractions, and whole numbers.
2. Computation
2.1 The student demonstrates the ability to - $1,7,8,11$. add and subtract whole numbers.
$\therefore 2,2$ The student demonstrates the ability to multiply and divide whole numbers.

2; 3, 19, 20,
2.3 The student demonstrates the toility to

23, 24
$12,13,15,34$
2.4:The student demonstrat t s the ability tomultíply and divide dócimals.
2.5 The student demonstrates the ability to add and subtract fractions and mixed numbers.
2.6 The student demonstrates the ability to
$4,16,17,22,28$.
$5,6,9,26$
multiply and divide fractions and mixed nümbers.
2.7 The student demonstrates the ability to use percent.
$14,18,29,30$,
31

Measurement
3.1 The student demonstrates the ability to find area and perimeter.
3.2 The student demonstrates the ability to convert a U.S. unit of measure to an equivalent unit of measure.
3. 3 The student demonstrates knowledge of $46,58,59$, metric units of measure.

63, 65
4. Whates and Graphs
4.4. 1 The student demonstrates the ability to interpret data from tables and graphs.
5. Applications/Problems

- -1 The student demonstrates the ability to solve word problems.

Geometry
6.1 The student demonstrates knowledge of basic geometric concepts.

TABLE 3

CAEP GOAL AREAS, OBJECTIVES, AND ITEM NUMBERS FOR 17-YEAR-OLDS, MATHEMATICS, 1979-80

GOAL AREA

OBJECTIVE

TEST ITEM NUMBER

1. Math Concepts
1.1 The student demonstrates an understanding of numbers in fraction, decimal and percent form.
1.2 The student demonstrates the ability to order decimals, fractions.
2. Computation
2.1 The student demonstrates the ability to add and subtract whole numbers.
2.2 The student demonstrates the ability to multiply and divide. whole numbers.

24, 32, 46, 48
45, 56, 58, 66
$1,7,8,11$
2, 3, 20, 21, 22; 27
2.3 The student demonstrates the ability -add and subtract decimals.
2.4 The student demonstrates the ability to multiply, and divide decimals:
2.5 The student demonstrates ${ }_{m}$ the ability to add and subtract-fractions and mixed numbers.

- 2.6 The student demonstrates the ability to
"- multiply and divide fractions and mixed numbers.
2.7 The student demonstrates the ability to

3. Measurement
3.1 The student demonstrates the ability to find area, perimeter, and volume.
3.2 The student demonstrates the ability to convert a U.S. unit of measure to an equivalent unit of measure.
3.3 The student demonstrates knowledge of metric units of measure.
$49,52,55,61$
25, 50, 54, 65
47, $57,60,62$, 68
4. Tables and Graphs
4.1 The student demonstrates the ability to interpret data from tables and graphs.
5. Applications/Problems
5.1 The student demonstrates the ability to solve word problems.
6. Geometry
6.1 The student demonstrates knowledge of basic geometric concepts.

34, 35, 36, 37,
38, 39, 40, 41, 42, 43
33, 59, 63, 67

17

The calendar for the CAEP-2 assessmentinds essentially the same as that used by both NAEP and CAEP-1; testing was conducted during October-November for 13-year-0]\$s in grade 8, during February-March - for 9-year-olds in grade 4, and during April-May for .17-year-olds in grade 11. Testing sessions. were limited to sixty minutes for the full assessment instrument and were conducted at times mutually agreed upon by local school personnel and UConnirepeséntatives. The instruments were administered by test administrators trained by UConn.

School districts participating in the Local Option had opportunities to have local personnel trained in testing procedures at workshops conducted by Conn personnel.

ANALYSIS OF RESULTS

Part II of this report provides the following:
(1) results by total test, goal area, and objective
(2) achievement comparisons among various groups of Connecticut students
$\because \quad$ (3) comparisons of Connecticut with the Nation and
\because the Northeast ,
(4) comparisons across CAEP-2 age groups
(5) comparisons between CAEP-2 and CAEP-1
(6) results and comparisons of the student questionnaire

Results for each individual mathematics item by age/grade level, sex, region, size of community, and, where applicable, CAEP-1 or NAEP-2 are presented in the appendix.. For more detailed descriptions of procedures and results, the reader may consult the Technical Report of the 1979-80 Mathematics Assessment prepared for the Connecticut State Board of Education, Bureau of Research, Planning and Evaluation.

1

INTERPRETATION OF RESULTS

Results for individual mathematics items are reported as the percentage of students in the statewide sample who answered the items correctly.

Results for categories such as objectives, goal areas, and total test are.reported as the average of the pefcentages correct of the individual items included in the categories. All percentages have been rounded to the nearest whole number, in order to simpltfy the reading of various tables, charts, and discussions, and to reflect the degree of precision which is probably most appropriate.

The results have been obtained from a statewide probability sample at' each age/grade level. As such, they may be considered as good estimates of the results which would have been obtained from the corresponding population (e.g., all Connecticut public school 13-year-olds in grade 8). It is highly probable that the population results would not be more than two percentage points higher or lower than the sample , results reported herein.

Many of the results are presented in formats which make it convenient to compare performances between and among various groups. I't should be noted, however, that three different assessment instruments were used in obtaining tire results, one for each age/gipade level. Hence, it would be invalid to compare differences between age/grade groups in catégories such as objectives, goal ăreas, or total test. Howeyer, individual item comparisgns between age/grade groups may be made where items wére common to both tests.
Smakl differences between groups are "probably not educationally significant: Hence, the discussion of results in Part III will highlight only differences larger than two percentage points. "Statistically ' significant differences" are technical in nature and could be subject to misinterpretation in the context of this summary; such differences are noted in the Technical Report only.

CONNECTICUT CAEP-2 RESULTS

Introduction

- Tables 1-3 presented earlier in this report list the mathenaticsifgoal areas and objectives which the CAEP-2 instruments were designed to measure. Results by goal area and objective for each of the age/grade levels are described in this section. Results by individual jtem. are, given in an appendix.
A
'Each CAEP mathematics goal area or objective was measured by a set of items matched to that goal area or objective. An individual item result is the percentage of students who answered the item correctly. Figure 1. shows the average percentage for all items on the test and, for each goal area, the average percentage of i tems matched to the goal area which were answered correctly by the 9\%, 13-, and 17-yearolds respectively. For example, in Figure 1, the 9 -year-olds show an average percentage of 74 for the Math Concepts goal area. This means that the average percentage of items answered correctly by 9 -year-olds in the state sample in the Math Concepts goal area was 74%. Figures 2-4 provide achievement results by objective.

The reader is reminded that different assessment instruments were used for the different age levels. Hence, comparisons across age levels would not be valiá.

Results for 9 -Year-01ds/Grade 4

The total test average for 9-year-olds was 77%. Performance on goal areas ranged from a high of 86% on geometry to a low of 63% on tables and graphs.

Achievement by 9 -year-olds was 80% or above on seven of the thirteen objectives, with the highest being 87% on Objective 3.1, Money. Performance on the four objectives concerned wi th whole number computations ranged from 80% to 84%. The lowest performance was 63% on Objective 4.1 , Tables and Graphs.

Results for 13-Year-01ds/Grade 8

The total test average for 13 -year-olds was 70%. The range of goal area performance was from 75% for both computation and geometry to 61\% for mathematics concepts.

Achievement by 13-year-olds on fifteen objectives ranged from 92% on Objective 2.1, Whole Number Addition and Subtraction to 53\% on two objectives, Objective 1.2, Ordering and Objective 2.7, Percent. Their performance was above 80% on two objectives in addition to Objective 2.1: 88\% on Objective 2.2, Whole Number Multiplication and Division, and 84% on Objective 2.3, Decimal Addition and Subtraction.

Results for 17-Yéar-01ds/Grade 11

The total test average for 17-year-olds was 75\%. Goai area performance ranged from 82\% for tables and graphs to 60% for geometry.

Performance by 17 -year-olds on fifteen objectives ranged from a high of 94\% on Objective 2.1, Whole Number Addition and Subtraction to a low of 60% on Objective 2.7, Percent, and Objective 6.1, Geometric Concepts. Also at the high end was Objective 2.3, Decimal Addition and Subtraction (91\%).

FIGURE 1

Achievement on Goal Areas by Age Group

FIGURE 2
Achievement on Objectives: 9-Year-01ds

TOTAL TEST
1.1 Place Value
1.2 Ordering.
1.3 Fractional Notation
2.1 Whole Numiers (+)
2.2 Whole Numbers (-)
2.3 Whole Numbers (x)
3.1 Money
3.2 Time
3.3 Linear Measure
4.1 Tables and Graphs
5.1 Word Problems
6.1 Geometry

FIGURE 3
Achievement on Ubjectives: 13-Year-01ds

TABLE 8

Achievement on Total Test by Reporting Groups

*NA $=$ Not Applicable. (The item was not used with this age group.)

TABLE 8 (continued)

FIGURE 4
Achievement on Objectives: 17-Year-01ds

TOTAL TEST	75
1.1 Rational Numbers	
1.2 Ordering	\square 70
2.1 Whole Numbers (+,-)	\square 94
2.2 Whole Numbers ($x,+4$)	
2.3 Decimals (+ , -)	
2.4 Decimals ($\mathrm{x} ; \mathrm{t}$)	
2.5 Fractions (,+-)	\square 68
2.6 Fractions ($\mathrm{x}, \mathrm{*}$)	\square 75
2.7 Percent	\square 60
3.1 Perimeter, Area, Volume	
3.2 U.S. Unit Conversion	
3.3 Hetric Units	
4.1 Tables and Graphs	\square
5.1 Word Problems	
6.1-Geometric Concepts	
	20 40 60 80 100
	average percentage of items answered correctly

ACHIEVEMENT COMPARISONS AMONG VARIOUS GROUPS OF CONNECTICUT STUDENTS

Region

Figure 5 presents results for the 9-, 13-, and 17-year-olds by region. For each age group, the average for all students is given, followed by the average for all students except those in Big Cities. The region averages were calculated with Big Cities omitted from their regions. Big cities were not included in the region data since data from previous Connecticut assessments have indicated that the scores of Big City students tend to differ from others in the regions.

At the 9-year-old level, the average for all students on the total test was 77%, while the average for all students minus those in Big Cities was 79\%. The regions differed very little in achievement on the total test.

The average for all 13-year-old students on the total test was 70%; the average for all minus the Big City students was 73%. The highest performance by 13 -year-olds was 76% in Region 2, with Regions 3 and 5 very close to that figure at 74\% each. At the low end of the range were Region 6 at 67% and Region 4 at 70\%. Performance in Region 1 was 72\%.

For all l1-year-olds, the total test average was 75%; the average for all minus Big City students was 77%. Regional performance by 17-yearolds ranged from 82% for Region 2 to 74% for Region 4.

Size of Community

The reader is reminded of the definitions of the various sizes of community used for the CAEP assessments:

1 - Big Cities. Towns of more than 100,000 population
2 - Fringe Cities. Towns whose borders are contiguous with Big Cities and whose populations exceed 10,000 3 - Medium Cities. Towns of more than 25,000 population 4 - Smaller Cities. All other towns

The-9-, 13-, and 17-year-old achievement results by size of community were similar to each other in that Fringe Cities, Medium Cities, and Smaller Cities all had averages within a few percentage points of their respective state averages while Big Cities has averages which were 13to 15 percentage points below their respective state averages.

17-YEAR-OLDS (ALL)

*Results for all students include Big Cities. Resuits by region do not Include Big Cities because the scores of Big City students tend to differ from those of students in their respective regions according to information from previous assessments in Connecticut.

FIGURE 6.

COMPARISONS OF CONNECTICUT WITII THE NATION AND THE NORTHEAST

Introduction

In this section, the achievenent results obtained for Connecticut students are compared with results obtained by the National Assessnient of Educational Progress in Mathematics, 1977-78 (NAEP-2). The NAEP-2 results represent students in the nation and in NAEP's Northeast region which includes the following states, Connecticut, Delaware, Maine, Maryland, Massachusetts, New llampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, D.C.

For detailed information on NAEP, the reader is referred to National Assessment of Educational Progress, Education Commission of the States, Suite 700, 1860 Lincoln Street, Uenver, Colorado 80295. NAEP Report No. 09-i 1 A-01, "Changes in Mathema'tical Achievement, 1973-78" states the following on Page 1:

What happened to mathematics achievement during that time? When all items were considered together, 9-year-olds' performance declined very s.lightly; the decline for 3 -year-olds was slightly larger and the decline for 17 -year-olds was appreciable.

The same NAEP report presents an analysis of results by a panel of persons concerned with mathematics education. The panel stated that results for whole number computation were satisfactory, that performance was high, and that declines were offset by gains during the period of comparisons'. The panel was concerned with the low overall performance on problem-solving and with the decline in this area from 1973 to 1978. On Page 25 of the report, the following is stated:

A number of factors were seen as contributing to these declines. As noted previously, the emphasis on:"back-to-the-basics" has often resulted in a narrowing of the curriculum, with more attention focused on computational skills and knowledge of facts and definitions and less time spent on prob-lem-solving. As Wilson stated, "Children are given very little opportunity to get into problem-solving activities." Carl concurred: "Back-to-the-basics has stripped youngsters of the chance to practice problem-solving skills."

The mathematics 1 tems common to the NAKP-2 and the CAEP-2 tests were axactly the same on both tests. Howaver, there was a difference in how the items wara administered; timed audiotapes to accompany the tests ware used by NAEP but not by CAEP. The effects of this difference, if any, would be difficult to identify. Howevar, it seems reasonable to assume that. the audiotapes provided an advantage on some Itams for NAEP students who are poopreaders as compared to their Connecticul counterparts.

Figures 7-9 display the results for 9-, 13-, and 17-year-olds respectively for Connecticut, the Nation, and the Northeast. Both CAEP-2 and NAEP-2 results are for 9 -year-olds in grade 4, 13-yearolds in grade 8, dind 17-year-olds in grade 11.

There were 11 mathematics items common to the CAEP-2 and the NAEP-2 tests for 9 -year-olds, The averages for all common items were 72% for Connecticut, $\$ 7 \% /$ for the Nation, and 62% for the Northeast. 4.

In all goaluareas, Connecticut students performed at a higher level than both the national and the Northeast students. The largest differences between Connecticut results and national results were 21 percentage pdofnts in Mpthematics Concepts and 20 percéntage points in Computation. Connecticut students were higher than their Northeast counterparts by 18 "percentage points in the Goal, Area of Computation and by 14 percentage points in Mathematical Concepts. Connecticut results ware onlymsilightly higher than those for the Northeast in the remaining goal areas.

Seventeen items were shared by the CAEP-2 and the NAEP-2 mathematics tests for 13 -year-olds. The averages for these shared items were 65% for Connecticut, 63% for the Nation, and 66% for the Northeast.

Connecticut students performed at about the same level as the national students and as the Northeast students in four of the six CAEP goal areas. For the two remaining goal areas, Connecticut students were slightly higher in the Measurement area and lower by 9 percentage points

$$
22
$$

than the national students and lower by 14 percentage points than the Northaast students in the Tables and Graphs area. It should be noted that in each of these two goal areas, the results are based on only one itenn.

Results fon 17-Year-01ds/Grade 11

There ware 13 items shared by CAEP-2 and NAEP-2. The average for these shared items was 72\% for Connecticut, 69% for the Nation, and 70\% for the Northeast.

On seven Computation items, Connecticut students averaged 74% compared to 68% and 69% for the nation and the Northeast region respectively. In Geometry, Connecticut, at 60\%, was 8 and 7 percentage points higher than the nation and the Northeast respectively, For the Goal Area of Applications/Problems, the performances were essentially the same. For Mathematical Concepts, Connecticut students performed 4 percentage points below those in the nation and 7 percentage points below those in the Northeast. The Connecticut, nation, and Northeast comparison was $75 \%, 80 \%$, and 81% respectively in the Goal Area of Tables and Graphs.

FIGURE 7

Parformances by 9 Year-0lds on NAEP-2 Items Connecticut. Nation, Northeast

FIGURE 8
Parformances by 13-Year-01ds on NAEP- 2 Items Comecticut. Nation. Northast

FIGURE y
Performances by 17-Year=0lds on WAEP.. 2 Items Commacticut, Nation, Northadt

26

Elaven 1 tems ware sharad by D_{m} and $\mid 3$-gearmolds. dight of which ware shared by all thram age groups. The most axtensive it tem sharing was * by 13 m and 17 -yarmolds with 36° items common to bath in addition to the eight already mantioned. Table 1 presents a comparison of chievemant across age groups on shared item grouped by goal areas.

The Whole Number Objectives with the coal Araa of Computation ware the only objectivas with anough shared itams (4) for a reasonable comparison across all threage lavels, On two addition items and one subtraction item. all three age groups performed at a high level with 13- and 17 -year-old parcentages in the 90 's and 9 -year-old percentages ranging from 80 to 93. On one subtraction item involving "borrowing" in two places, the difference was more pronounced with 9-. 13-. and 17 -year-old results being $60 \%, 88 \%$ and 92%, respectively.

In other goal areas, 9-year-olds had 16 items shared with ond or both of the other age groups. For these itens, the 9 -year-0ids scored from 6 to 38 percentage points lower than 13 -year-olds with the largest differences indicated for an item asking about a "fractional part" of a rectangle and an item involving the/reading of a table matching shoe sizes with sock sizes.

Forty-four items ware shared by 13- and 17-year-olds across all goal areas. The results for 26 of these items differed by 10 percentage points or less, with the results for 17 -year-olds usually a bit higher than those for 13 -year-olds. The differences for four remaining items in the Goal Area of Mathematical Concepts ranged from 18 to 28 percentage points with the results for 17-year-olds consistently the higher. Six of the remaining items were in the Goal Area of Computation and dealt with decimals, fractions, or percent. The range of differences for these six items was from 11 to 23 percentage points in favor of the 17 -year-olds. Three remaining items in the Goal Area of Measurement and one in the area of reading Tables and Graphs showed differences in results ranging from 12 to 23 percentage points with the results for 17 -year-olds higher in all cases. For the Goal Area of Applications/Problems, the size of the differences in results between the two age groups on the four remaining items ranged from 16 to 27. percentage points in favor of the 17-year-olds.

TALS 4

Compariton of Achlovement Aspoet Age aroups on Shared It tom by bael Areas

TABLE 4 (continued)

NOTE: There were no shared items for the goal area of Geometry.

Introduction

A major objective of the 1979-80 CAEP mathematics program (CAEP-2) was to provide data which could be compared to data obtained in the 1976-77 CAEP mathematics program (CAEP-1). With this objective in mind, the Statewide Mathematics Advisory Committee gave high priority to the selection of items from the CAEP-1 assessment instrument for the CAEP-2 test. In addition, testing conditions and all other aspects of the CAEP-2 program were modeled on the CAEP-1 program as closely as possible.

Figures 10-12 display the average percentage of items common to CAEP-1 and CAEP-2 answered correctly by the $9-, 13-$, and 17-year-oTds respectively.

Results for 9-Year-01ds

There were 36 mathematics items common to CAEP-1 and CAEP-2 at the 9 -year-old level; this represented 60% of the 60 CAEP-2 items. The averages for all common items combined were 79\% for CAEP-2 and 76\% for CAEP-1.

The performance by CAEP-2 9-year-olds was essentially the same as their CAEP-1 counterparts for three of the six goal areas: Mathematical Concepts, Measurement, and Tables and Graphs. For the Goal Area of Computation, the CAEP-2 results were higher by six percentage points with an average of 81% compared to 75%. The CAEP-2 results were also higher in the Goal Area of Applications/Problems with an average of 66% compared to 59\% for CAEP-1. The CAEP-2 Goal Area of Geometry was not assessed on the CAEP-1 test.

Results for 13-Year-01ds

The 34 items common to CAEP-1 and CAEP-2 at the 13-year-old leve1 amounted to 49% of the 70 CAEP-2 mathematics items. The averages for all common items combined were 74% for CAEP-2 and 75% for CAEP-1.

The same six goal areas for 13-year-olds were assessed in CAEP-1 and CAEP-2. Of these, the Goal Area of Computation with 18 conmon items had essentially the same level of results in each CAEP assessment. Two of the remaining goal areas, Applications/Problems (68% and 71%) and Geometry (91% and 94\%) were very close in results with the difference of three percentage points in each case favoring CAEP-1. The results for each of the three remaining goal areas differed by 5 percentage points with the CAEP-1 results higher in each case as follows: Mathematical Concepts, 47% and 52%, Measurement, 66% and 71%, and Tables and Graphs, 83% and 88%.

Results for 17-Year-01ds

There were 41 mathematics items shared by CAEP,-1 and CAEP-2 which represented 59\% of the 69 CAEP-2 items. The averages for all common items combined were both 77% for CAEP-2 and CAEP-1.

The results were essentially the same for CAEP-1 and CAEP-2 in five of the six goal areas. In the remaining Goal Area of Tables and Graphs, the results differed by only three percentage points on the one shared item and both performances were quite high at 91% and 94% for CAEP-2. and CAEP-l respectively.
figure 10

FIGURE 11

Performances by 13-Year-01ds on Items Common to CAEP-2 and CAEP-1 by Goal Area

TOTAL COMMON ITEMS (34)

GOAL AREA
MATH CONCEPTS
(3 items)

COMPUTATION
(18 items)

MEASUREMENT
(7 items)
71

APPLICATIONS/ PROBLEMS
(4 items)
 GEOMETRY
(1 item)

FIGURE 12

Responses to Questionnaire I tems

The responses of 9-, 13-, and 17-year-olds to questionnaire items are given in Tables 5, 6, and 7 respectively as percentages selecting various choices. Results for questionnaire items shared with CAEP-1 . or with NAEP-2 are included where applicable.

Two questionnaire items at each age level asked students if they felt that mathematics was (1) "more for boys than girls" and (2) "more for girls than boys." Across age levels, very few of either sex said "yes" to either item. The range across age levels for males who said "yes" to (1) was 8% to 12%; for females it was 2% to 4%. For (2), the range for males who said "yes" was 4\% to 6\%; for females it was 1\% (17-year-olds) to 10\% (9-year-olds). The same items were used by NAEP with similar results for the national sample. .

The use of hand calculators was investigated by both CAEP-2 and NAEP-2. The Connecticut $9-y e a r-o l d s$ who reported that they had "never" used a hand calculator constituted 27% of their age group; for 13-year-olds, the figure was lower at 20% and still lower for 17 -year-olds at 8%. The NAEP-2 results for the "never" response were $23 \%, 30 \%$, and 21% for 9-, 13-, and 17-year-olds respectively.

All students were asked, "Do you or does your family own a hand calculator?" The Connecticut responses to this question were "yes" by 85% of 9 -year-olds, 87% of 13 -year-olds, and 93% of 17 -year-olds. At the national level, the responses were a bit lower at $76 \%, 79 \%$, and 86\% for 9-, 13-, and 17-year-olds respectively.

All students were asked to estimate the number of hours per day that they watched television. Those who reported more than four hours per day of TV watching constituted 28% of the 9 -year-olds in the CAEP-2 sample and 41% of those in the CAEP-1 sample. There was also a decline in the percentage of 13 -year-olds reporting more than four hours of TV watching from 25\% for CAEP +1 to 16% for CAEP-2. The percentage of 17-year-olds who reported watching TV for more than four hours per day. was 10 w for CAEP-1 at 11% and went even lower for CAEP-2 at 6%. As with CAEP-1, the overall pattern for CAEP-2 indicated that television watching tends to decline as student age increases.

All students were asked, "How much do you like math?" The pattern of responses was essentially the same for both CAEP-2 and CAEP-1. At the 9 -year-old level, approximately 50% said, "Very much", while approximately 10\% said "Not at all." For 13-year-olds, "Very much" was the choice by approximately 30\% and "Not at all" the choice by approximately 10\%. For 17 -year-olds, the "Very" much" choice was made by about 20\% and the "Not at all" choice by about 20% with the remainder selecting "Somewhat." The overall pattern in both CAEP-2 and CAEP-1 shows that the amount that students say they like math declines as age increases.

TABLE 5
Responses of g-Year-01ds to Questionnaire Items Reported in Percentages

- KAEP-2 response categories used different words, but meanings
were essentially the same as the CAEP category words.
$C_{\text {mac }}$

TABLE 6

Responses of 13-Year-Olds to Questionnaire Items Reported in Percentages

EP -2 response categories have been combined: "Agree" and "Strongly agree" to "Yes": "Disagree" and "Strongly Disagree" " Nr IAEA 0 se categories have been combined: "Almost daily" and "A few times a week" to "Often"; "Less than once a reek'ERIC:e a month" to "Sometimes".
urL

TABLE 7

Responses of 17 －Year－01ds to Questionnaire Items Reported in Percentages

Questionnire Items	All	Stex		$\begin{aligned} & \text { CALP-1 } \\ & \text { 1976-77 } \end{aligned}$	MAEP－2 1977－78
		1	f		
MPH PORE FOR BOYS TIWN GIRES					
Yes No	7	11	3		2＊＊
Undecided	70	60 28	80		91
Importart to know math to get cood 308					
－Yes	92	94	90		
No	4	3	4		
I WOLLO LIKE TO WOAK Af JOB USILG MATH					
Yes	34.	40	28		
Mo	33.	29	38		
Undecided	33	31	35		
mith ustful solving problens In EYERYOAY LIFE					
Yes	79	81	77		77＊＊
Nó	8 13	12	9 9	＊	11
MATH IS CORING					
Yes	21	21	20		
Mo	35	38	32		
Somat laes	45	41	49		
MATH UPSETS HE					
Yes	10	9	11		
No	53	58	41		
Sometiares	38	33	42		
WATH MDRE fOR GIRAS THAN BOYS					
Yes Mo				72	3＊＊
Ho Undecided	76 21	70	112	＋rat	89
HOM OfTEN USEO HANO CALCULATOR					
Often Never	27 8	28 9	27		$33 * *$ 21
Sometimes	64	64	65		
YOU OR FAMILY OUM havo CLLCUATOR					
Yes	93	94	91		86
No	6	5	8		13
1 don＇t know	1	1	1		1
I USUALLY UHOERSTAND MATH					
${ }^{2}$ Yes	83	87	80		67＊＊
No	16	13	20		20
				Undecto	14）
TOOK MATH ORLY BECAUSE I RAD TO					
Yes	34	31	36		26＊＊
No	66	69	63		63
（3）				Undecidd	11）

－\％	聿	Sex ${ }^{\text {＇}}$		CAEP－11976-71	$\begin{aligned} & \text { MEP-2 } \\ & \text { 1971-7 } \end{aligned}$
	All	M	F．		
stuits pen bar of iv					
aic \because ．Less than 1	23	24	23	22	
旡 ${ }^{\text {ama }}$ Between 1 and 2	34	35	33	30	
新＊．．between－2 and 3	24	24－	24	23	
ent $\because 2$ getween 3 and 4	13	12	14	15	
W Mor More than 4 ，	6	． 5	6	11	
Sts－HOW MJOH DO YOU LIEE MATH					
Very much	20	21	18	21	
Somewhat	63	64	61	56	
Hot at all	17	15	20	23	
how useful is mitll compared to oiner sudjects					
Very useful	43	50	37	35	
Somewhat useful	50	45	55	56	
Not very useful	7	6	8	9	
of grades 9．10．11．HOW many YEARS OF MATH					
None	0.3	0.2	0.4	0.3	
1 year	2	2	3.	7	
2 years	18	14	23	24	
3 years	79	84	73	69	
hold hard are math courses					
Easier than most courses	17	20	15		．
About the same as most	41	46	48		
Harder than most	35	35	36		
hhich statement best describes yOUR feelings					
Math is my favorite	5	6	4		
Math is one of my favorites	39	42	36		
Math is not gne of my					
favorites	40	38	42		
Math is my least favorite	16	15	18		
HOURS PER WEEK EHPLOYEO OUTSIDE OF SCHOOL					
Hone	29	25	33		
1 to 5	10	8	12		
6 to 10	10	11	10		
11 to 15	12	11	13		
16 to 20	17	17	18		
21 to 25	11	14	9		
Hore than 25	9	14	4		

[^0]
Achievement on Total Test by Questionnaire Response Groups

Table 8 presents the achievement averages on the total test for various reporting groups at each age level.

Males and females scored essentially the same on the total test at the 9 - and 13-year-old levels. Male 17-year-olds performed higher than females by six percentage points at 78% and 72% respectively.

Two items asked students if they felt that mathematics was more for one sex than the other. At each age level, those who said "yes" tended to score lower on the total test than did those who said "no" or were undecided.

The profiles were similar for three attitude items; the first asked students if they felt that math is boring, the second asked if they felt it upsets them, and the third asked how much they like math. The 9 - and 13-year-olds who indicated a negative attitude tended to score from one to eleven percentage points below other students, while at the 17 -year-old level, students who answered negatively scored from eleven to eighteen percentage points lower on the total test than other students.

The results for an item asking how often the student had used a hand calculator showed only small differences in total achievement among responses; with 13- and 17-year-olds who responded "never" scoring slightly fower than other students. At each age level, students who said that their family did not own a calculator tended to score approximately 10 percentage points lower than other students.

On a question concerning how many hours per day students watched television, those who reported watching less than two hours scored from 6 to 18 percentage points higher than those who reported watching more than four hours, with the smallest difference recorded for 9-year-olds and the largest for 17-year-olds.

Several questions were asked of 17 -year-olds only. One such question concerned the number of years the student had studied math in grades 9, 10, or 11. Students reporting 3 years of math averaged 76% on achievement. Those with only one year of math averaged 57% on achievement. Another question asked how many hours per week students were employed outside of school. There was essentially no relationship between hours of employment and total test score, with all categories achieving at about the 73% level.

TABLE 8 (continued)

Questionnaire Items	Average Percentage of Items Answered Correctly on Total Test		
	9-Year-01ds	13-Year-01ds	17-Year-01ds
HOW USEFUL IS MATH COMPARED TO OTHER SUBJECTS			
Very useful	78	71	78
Somewhat useful	77	70	69
Not very useful	67	65	64
I WOULD LIKE TO WORK AT JOB USING MATH	- NA	NA	
			79
No			65
Undecided			74
JF GRADES 9, 10; 11, HOW MANY YEARS OF MATH	NA	NA	
None -		N	57
1 year			57
2 years .			62
3 years			76)
WHICH STATEMENT BEST DESCRIBES			
YOUR FEELINGS	NA	$N A$	
Math is my favorite			78
Math is one of my favorite			78
Math is not one of my favorite			70
Math is my least favorite			64
HOURS PER WEEK EMPLOYED OUTSIDE JF SCHOOL	NA	NA	
None		NA	71
1 to 5			74
6 to 10			75
11 to 15			74
16 to 20	-		74
21 to 25			72
More than 25			72 :\%

PART III: INTERPRETATIOISS AND RECOMMENDATIONS

INTRUDUCTION

Discussion

The Statewide Mathematics Advisory Committee (SMAC) has collaborated with personnel of the Connecticut State Department of Education and members of the Mathematics Education Center, School of Education, The University of Connecticut in interpreting the results of the. assessment. The interpretations of results and the recommendations for mathematics education in Connecticut are presented in this section of the report.

In designing the mathematics tests and in considering the findings, SMAC recognized that tinere are certain limitations in any effort to assess achievenent in mathematics. There are many more worthy goals and objectives than can reasonaily be assessed by a paper and pencil test in a limited period of time. Hence, SMAC selected for assessment those mathematics objectives which the members considered to be of high priority. Also, for each objective there are unlimited possibilities for combinations of itens which could be selected to assess the objective, ranging from very easy to extremely difficult. Items were selected which, in the professional opinion of Committee members, represented reasonable achievement expectations for a particular grade level.

The reader is reminded that the tests were different for each age/grade level even though the goal areas and some of the objectives have the same names.

In general, the task force was happy to see an increase in the performance of 9 -year-olds in the CAEP-2 statewide sample as compared to the CAEP-1 sample. However, there was continued concern over the performance of 13 -year-olds which showed a small decrease from CAEP- 1 to CAEP-2. Seventeen-year-olds performed at about the same level on both assessments. Overall, the results indicated the need to continue to strengthen the mathematics program in Connecticut

General Recommendations

(1) Care should be exercised to maintain a balanced emphasis between "basic" computation and the other areas of the mathematics curriculum.
(2) The role of calculators in mathematics education should be subjected to research studies.
(3) The amount of time in minutes per week assigned to the teaching of mathematics in grades $\mathrm{K}-8$ should be increased.

GOAL AREA 1: MATHEMATICAL CONCEPTS

Discussion

Both 9-year-olds and 17-year-olds performed at about the same level for this goal area as their average performances for all goal areas. However, of all goal areas for 13-year-olds, this one showed the lowest score at 61%. Two items on the test for 13 -year-olds were chiefly responsible for the relatively low average score in this goal area. Only 24\% of 13-year-olds correctly identified a fraction falling between 1/4 and $3 / 8$ (Item \#56) and only 44\% correctly gave the percent equivalent to the fraction $1 / 5$ (Item \#32).

These performances represent a drop from the level of performance of 13-year-olds in CAEP-1 who scored 32% and 55% respectively on the same two items., CAEP-2 17-year-olds on the same items scored somewhat higher at 52% and 62% respectively. On a new item which asked which of four fractions is least, 13-year-olds scored 54\% (Item \#57), and 17-year-olds scored 75\% (I tem \#58).

Thirteen-year-olds scored 53\% on an item asking which of four decimals represents the greatest number (Item \#62), and on the same item, 17-year$01 d s$ scored 72\% (Item \#66).

On shared items in Goal Area 1, the average level of performance for CAEP-2 had remained about the same as the CAEP-1 performances for 9and 17-year-olds, and had decreased slightly at the 13-year-old level.

Recommendations

(1) At all grade levels, there should be increased emphasis on understanding relationships between fractions and decimals. Of particular practical importance in.the age of the cal:culator is the technique of converting from fraction nota4. tion to decimal notation.
(2) The emphasis on ordering and place value in the early grades should continue, and increased emphas is should be given to ordering of fractions and decimals in later grades: The recommendation from CAEP-1 for more emphas is on the concepts of "less than" and "more than" is reinforced.:
(3) Recommendations from CAEP-1 concerning fractional concepts are reiterated. In grades one through four there should be emphasis on the meaning of fractions. Students in the third and fourth grades should be matching equivalent fractions and models of equivalent fractions should be used as aids in grades three through eight.
(4) There should be emphasis given to the concept of percent, with particular attention to the relationship between percents and proportions in grades 7 and 8.
(5) The mathematics curriculum at all grade levels should include increased opportunities, for students to experience mathematical concepts and to develop a stronger intuitive sense of number.

GOAL AREA 2: COMPUTATION

Discussion

At each age level, the average score for the Computation goal area was among the highest for all goal areas.. Nine-year-olds had an overall average of 82%; on items shared with CAEP-1, the performance level for CAEP-2 at 81% was higher than the CAEP-1 level of 75%. The 13 -yearolds'overall average on computation was 75\%, and the overall average for 17-year-olds was 80\%. Both 13- and 17-year-olds matched the (CAEP-1 performance levels on shared items.

The performances of CAEP-2 9-year-01ds on three items represented sizeable gains as compared to CAEP-1 performances on the same items. On an item involving subtraction of whole numbers (Item \#7), the CAEP-2 performance was at the 60% level as compared to 51% for CAEP-1. An item requiring the addition of four dollar-and-cents figures (Item \#10) resulted in a score of 55% for CAEP-2 and 48% for CAEP-1. For a whole number multiplication item (Item \#13), the results were 77% for CAEP-2 and 68\% for CAEP-1.

In order to get some base-line data on an objective concerning the ability of 9 -year-olds to divide whole numbers with one digit divisors, four such items were included on the CAEP-2 tests (\#'s 6, 14, 15, 18). The CAEP-1 test did not include such items. The range of scores for these items was 77% to 89%.

Both 13- and 17-year-olds, achieved well on whole number items. However, there is still some room for improvement in computation items where zero is involved. For the item, 671×402, the achievement level for 13-year-olds was 75% mand for 17-year-olds it was 83%. While these performances were a bit better than the corresponding NAEP-2 national performances on the same item (72% and 79%) it is reasonable to expect higher scores by Connecticut students. The CAEP-1 item, $714+7$, was repeated on the CAEP-2 test for both 13- and 17-year-olds and results were slightly higher than those for CAEP-1. For 13-year-olds, the CAEP-2; CAEP-1 scores were $80 \%, 74 \%$; for 17-year-olds the scores were 76\%, 77\%. Once again, the incorrect choice, 12, was fairly common and seemed to highlight the importance of estimating the reasonableness of an answer. Another division item which required a zero in the answer was the NAEP-2 item, $3052 \div 28$, used at the 17 -year-old level where 72% of Connecticut students answered it correctly. This was a respectable level for an item as difficult as this, particularly'whencompared to the NAEP-2 national results of 52% answering correctly.

- The CAEP-2 results for both 13- and 17-year-olds in adding and subtracting decimals were essentially the same as the CAEP-1 results.

Both 13- and 17-year-olds performed'reasonably well on multiplication and division of decimals. However, just as with CAEPrl, there was evidence of difficulties with decimal placement. The lowest performance was by 13 -year-olds on a decimal-by-decimal division item (\#17, 67\%), an iten type not used on CAEP-1. On the same item, 17-year-olds were higher with 77% answering correctly.

For the objective dealing with addition and subtraction of fractions and mixed numbers (Objective \#2.5), at both the, 13- and 17-sear-old levels there were three items shared by CAEP-1 and CAEP-2; the results were relatively low compared to other computation items and essentially the same both times. The averages of the three items for 13 -year-olds were 64% for CAEP-2 and 66% for CAEP-1. The averages of the three items for 17-year-olds were 68% for CAEP-2 and 69% for CAEP-1. On items common to both age levels, 17 -year-olds scored from 13 to ibs percentage points higher than l3-year-olds, an encouraging result. \% Just as with CAEP-1, the CAEP-2 difficulty appears to be mainly with finding lowest common denominators.

The CAEP-2 results for both 13- and 17-year-olds (71\% average for both age groups) for multiplication and division of fractions and mixed numbers were essentially the same as the CAEP-1 results (73% for 13 -yearolds and 68% for 17 -year-olds) on shared items. For CAEP-2, two division items were included at the 13 -year-old level (CAEP-1 did not test 13-year-olds on division with fractions); the results were somewhat low at 55% and 59%.

A new objective on the ability to use percent (Objective 2.7) was included on the CAEP-2 tests at both the 13- and 17-year-old levels. The results were somewthat low on two NAEP-2 items used with both age levels. On the item, " 30 is what percent of 60 ", 43% of 13 -year-olds and 61% of 17 -year-olds answered correctly. Each age level performed only as well as the corresponding NAEP-2 national sample. A very low performance was shown on the item, what is 4% of 75 ? Only 23% of 13 -year-olds and 46% of 17 -year-olds answered correctly. The improvement from the younger to the older level should be noted. The performances by Connecticut students were almost twice as high as their respective NAEP-2 national counterparts.

Overall, the CAEP-1/CAEP-2 comparison indicated that Connecticut students generally have slown some small improvements in computation skills and have not lost ground in other areas of the curriculum.

Recommendations

(1) More emphasis should be given to whole number computations where zero is involved in elther the problem or in the answer.
(2) Extra consideration should be given to the correct placement of the decinal point in multiplication and division problems.
(3) Emphasis at all grade levels should be given to estimating answers and to considering the reasonableness of solutions. This is of particular inportance as the use of calculators becomes more commonplace.
(4) Beginning in grade seven and continuing in higher grade levels, more emphasis should be given to compuţations involving the use ? of percent.

GOAL AREA 3: MEASUREMENT

Discussion

The results in the Measurement goal area were quite varied from one. age group to another.' The $9-$-year-olds' performancéin, this goal area was a bit higher than thein average for the total test the 13-yearolds' performance was seven percentage points' below their total test average, and the 17-year-olds" ayerage for the g"bal area wasossenr. tially the same as their total test average.
For the most part, g-year-olds repeated the comparatiyely high level of performance of their CAEP-l counterparts on the shared ittems of the Measurement goal area (11 out of 14 were shared items.). However, the students demonstrated a poor performance on two metric measure items. Only 44\% of the 9 -yeardolds answered correct that one mefer equals 100 centimeters and only 49%, identified kine kinmeter as the best metric measure for the distance between cities as contrasted with 95\% who identified the mile as the best U. S. measare for the drance between New York and Bóston.

\therefore The performance of 13 -year-olds was quite variable on tems dealing with measurement:. They did reasonably well on the perimeter of a - triangle (79\%, level) and somewhat less well on the perimeter of a rectangle (56\% level).

The greatest varlability in the performance of 13-year-olds came in Objective 3.3 (metric). While 79\% correctly identified the 11 ter as the best unit for the measure of a gasoline tank and 69% correctly dentified the kilometer as the best unit for the distance between ctttes, ofily 39% were correct in converting elght ktlograms to grams and onily 49% were correct in converting 357 centimeters to meters.
\because Seventeen-year-olds performed only slightly higher on these last two itenis (45% and 53% respectively).

The CAEP-2 tests for 13-year-olds and 17-year-olds included the same three CAEP-1 items on converting U.S. units of measure to equivalent units of measure, On an iten requiring the conversion of $11 / 2$ pounds ty ounces, the CAEP-2 performance by 13 -year-olds at 50% was 8 percentage points lower than the CAEP-1 performance. On the "same item,
: the 17 -year-olds scored 73% on CAEP-2 and 74% on CAEP-1. An item requiring the conversion of 30 inches into feet and inches resulted in a difference of 8 percentage points between CAEP-2 and CAEP-1 at the 13-year-old level, with the CAEP-2 score of 78% the lower of the two. The performances of 17 -year-olds on the item was high for both CAEP-2 and CAEP-1, with CAEP-2 again the lower at 88% to $.92 \%$. On an item requiring the conversion of 8 quarts into gallons, the f: results for 13 -year-olds were lower on CAEP-2 than on CAEP-1 by 9 percentage points, 67% to 76%. The results for 17 -year-olds were better, but still favored CAEP-1, 79\% to 84%. - The differences (seem to be evidence that there has been some deemphasis in recent years on work with U.S. units of measure in anticipation of increased importance of metric units.

$$
\therefore \quad \because \quad \cdots
$$

(1) More attention should be given to perimeter and area problems, beginning in fourth grade.
-1. (2) Work with U.S. units of measure should continue (particularly in the upper grade levels) until it is obvious that the conversion to metric units has become widespread in everyday applications.
(3) At all levels, multiplying and dividing by multiples of 10 should be given special attention to provide a strong background for working within the metric system.
(4) More emphasis should be given to metric terninology and to converting to equivalent units within the metric system.
(5) The teaching of measurement should be encouraged in applied areas such as home economics, shop, and science as well as in mathematics.

Discussion

The Tables and Graphs goal area produced mixed levels of results across the age levels. This was the lowest of all goal areas for 9 -year-olds at 63\%, a middle goal area for 13 -year-olds at 73%, and the highest goal area for 17 -year-olds at 82%.

Nine-year-01ds in CAEP-2 matched the satisfactory performance of their CAEP-1 counterparts on two bar graph items for which the respective averages were 81% and 83%. However, only 47% were able to read correctly a table of sock sizes matched with shoe sizes. On an item in which they were required to identify the bar graph depicting certain given data (Item \#60), 42% were correct. While low, this result compares favorably with the NAEP-2 national results of 32%.

In interpreting data from tables and graphs, both 13- and 17-yearolds performed at levels which the committee considered to be reasonably high for the age/grade level, with the exception of a NAEP-2 item used at both age levels (Item \#60 for 13-year-olds, Item \#51 for 17 -year-olds). The item required reading and interpreting a circle graph; Connecticut 13 -year-olds performed at a lower level than the NAEP-2 national sample at 55% to 64%, and 17 -year-olds were lower than the NAEP-2 sample at 66% to 70%.

Recommendations
(1) Continued attention should be given to reading and interpreting tables and graphs, particularly the use of tables and graphs in problem solving situations.

GOAL AREA 5: APPLICATIONS/PROQLEMS

Discussion

The performance at all three age levels on problems was low. Nine-. 13-, and 17-year-olds on the average for the goal area scored 68\%, 66%, and 70% respectively.

CAEP-2, 9-year-olds achieved at a higher level than their counterparts on each item shared with CAEP-1. On an item concerning the change from $\$ 5.00$ for a $\$ 1.40$ purchase, the CAEP-2 score was 57%, and the CAEP-1 score was 18 points lower at 39%. Both CAEP-2 and CAEP-1 had high scores on an item about the cost of 7 books at $\$ 2.00$ each, with the CAEP-2 score just one point higher at 86%.

At the 13-year-old level, the CAEP-2 scores were at about the same level or a bit below the CAEP-1 scores on shared items. Both groups scored high on an item about a rocket directed at a target 525 miles south which landed 624 miles south; the open-ended question asked by how many miles it missed its target. The CAEP-2 result was 82%, and the CAEP-1 result was 81%. On an item dealing with discounts on a TV set of 10% and 15%, the CAEP-2 score was 5 points lower than the CAEP-1 score, 56% to 61%.

For 17-year-olds, the results on shared items were about the same for CAEP-2 and CAEP-1. On an item asking the 6% tax on a $\$ 200$ TV set, the CAEP-2 score of 83% was 3 points higher than the CAEP-1 score.

Connecticut 9-year-olds outscored their national counterparts on each of the four items shared with NAEP-2. The largest differences was in an item asking about the cost of three items from a menu. The CAEP-2 score was 88% as compared to the NAEP national score of 63%. On an item asking how much more a $\$ 5.25$ book costs than a $\$ 2.75$ airplane, the CAEP-2 score was somewhat low at 54%, but the NAEP- 2 score was even lower at 46\%.

At both the 13-, and 17-year-old levels, the CAEP-2 results were about the same as the NAEP-2 results. The 13-year-olds scored low (44% for CAEP-2 and 35\% for NAEP-2) on an item which asks how many feet of fencing Mr. Jones needs for his 10 by 6 rectangular garden. The 17 -yearolds' performances were low on an item dealing with the amount of each installment in the purchase of an automobile; the CAEP-2 score was 41% and the NAEP-2 score was lower at 35%.

The evidence supports the opinion that students are not getting suffictent practice in handling practical, real-world problems.

Recommendations

(1) Problem-solving is of highest priority and as such should be an integral part of all math activities, not simply an isolated topic. Basic skills and concepts should be integrated with problens that strengthen computational skills and give relevance to the materlal being studied.
(2) Techniques of problellmsolving shoutd be stressed even for good. readers: Teachers should stress the importance of analyzing a problem and devising a plan for its solution. They should provide frequent practice in identifying the unknown quantity, selecting usefül pertinent information, choosing a procedure for solution as well as estimating the reasonableness of an answer, and checking for accuracy of computation.
(3) Every effort should be made to keep problems relevant to the experiences and needs of students.
(4) Mathematics teachers should work with teachers in other curriculum areas to help reinforce problem skills.
(5) The use of calculators is recommended beginning in grade 7 to allow students to do the computation part of problems more rapidly and hence to allow them more time to do more problems.
(6) Teachers are encouraged to use the technique of "a problem a day."
(7) Problem sets should contain a variety of problems requiring various arithmetic operations for solutions.

GOAL AREA 6: GEOMETRY

Discussion

For 9 -year-olds, the geomatry goal area required students to identify and name geometric figures, a task with they were able to do quite successfully. The results ware highest (97\%) for an itam (13i) asking students to identify a square, and somewhat lower but still good for an Item11 (M52) on Identifying actangle (80\%) and an 1 tem (149) on ldentifying a triangle (82\%), Gemetry was not a goal area for CAEP-I. 9-year-olds.

- Thefgeometry goal area for 13-year-olds produced mixed results. Students perfomed well on identifying parallel lines (Item $53,91 \%$) and on identifying the diagonal of a rectangle (ltem \#61, 91\%). On an item (\#69) requiringrstudents to identify the radius of a circle, 68\% answered correctly in CAEP-2, while 64\% of their counterparts in NAEP-2 answered correctly. The lowest performance level was 52% on Identifying an equilateral triangle (ltem \#64); the corresponding NAEP-2 results were eveli lower at 47% answering correctly.

Geometry for 17 -year-olds dealt with a wide variety of geometric concepts and produced a wide variety of results. These students were strongest on identifying the angle formed by the hands of a clock (75\%) and on visuallzing the number of blocks required to fill a certain crate (72\%). They were reasonably successful with an item (\#63) requiring some notion of similar triangles on which 60% of the students in CAEP-2 answered correctly as compared to 52% of their NAEP- 2 counterparts. The CAEP-2 score was the same (32\%) as the CAEP-1 score on an Item (\#59) requiring that students estimate the circumference of a circle given the diameter.

Recommendations

(1) Geometry should continue to be a part of the curriculum for the elementary grades.
(2) Emphasis should be given to evidence of geometric concepts and models as they occur in the world around students.
(3) More emphasis should be given to informal and intuitive treatments of certain geometric concepts and facts for the middle grades and for all high school students whether or not tr: take a full course in geometry.

APPENDEX A
 STATEWIDE MATHEMATICS ADVISORY COMMITTEE MEMBERSHIP LIST

$$
1
$$

STATENIDE MATHEMATICS ASSESSMENT ALUISORY COMMITTEE

Ur. Lymm Anderson
Mathamatics Suparvisor
Varnon Publle Schools
Rockvilla, Connecticut 06060

Or. Thomas Andreoli
Coordinator of Mathematics.
Research and Evaluation
East llartford Public Schools
East Hartford, Connecticut 06108

Dr. Linda V. Ball
Director of Mathematics
Glastonbury Publtc Schools
Glastonbury. Connecticut 06033

Dr. Robert Carchman
Director of Instructional Programs
North Haven Public Schools
North Haven, Connecticut 06473

Mrs. Jean Commaghan
Mathama ties Depar tmant Chatroars
Norwleh Frae Acadamy
Norwich, Connacticut Oblous
r
Mr. Frank Levant 1
Vocationalulachulcal reacher
Kaynor Vocational-Techuical Selpe Waterbury, Connecticut 06708

Mrs. Ann Mckinney
Elementary School Teachor
Colchester School System
Colchester, Connecticut 06415

Dr. George Spooner
Professor of Mathematics Educati Central Connecticut State Colleg New Britain, Connecticut 06050

Or, Gearge a. Kinkade
Education Consultant (Evaluation)
Bureau of Rasaarch, Planning and Evaluation State Department of iducablon Hox 2219
HartPard. Connecticut obils

Mr, Steven Lelnwand Education Consultant (Matamaties) Bureau of Curriculum and Staff Davalopment State Department of Education Hox $221 y$
Hart.ford. Connecticut 06115

SUE RESOURCE PERSONNEL

Mr. Douglas A. Rindone
Education Consultant (Evaluation)
Bureau of Research. Planning and Evaluation
State Department of Education
Box 2219
Hartford, Connecticut 00115

Ur. Peter M. Prowda
Education Consultant (Evaluation)
Bureau of Research, Planning and Evaluation
State Department of Education
Box 2219
Hartford, Connecticut 06115

Dr. Roger Richards
Education Consultant (Evaluation)
Bureau of Research, Planning and Evaluation
State Department of Education
Box 2219
Hartford, Connecticut 06115

ApHender it

MAIHEMAILCS JILM PEAFORMANCE BY

vaniuls ciraurs

This appendix consists of lables A-1, A-Z, and A 3 contalining data for 2-. IJ.. and \mid-year oulds. raspectivaly, for ach Individual mathamatics item on aich test, the tablas pruvide the percentaye of students answering correctly fin each of these categorlas: all students minus those in Illy citles, all students in the sample. students by sox. reglon, and size of commilly. Also. CAtP I results or NAEP-Z rexulis are glven where applicatile.

TABLE A. 1

Individual Mathematics Item Performance by CAEP-2 9-Year-01/ds by Sex, Region, Size of Community with CAEP-1 or NAEP-2 Results Where Applicable

*on-ended item
**Regions do not include Big Cities

TABLE A. 2

Individual Mathematics Item Performance by CAEP-2 13-Year-01ds by Sex, Region, Size of Community with CAEP-1 or NAEP-2 Results Where Applicable

${ }^{*}$ pen-ended item

*Regions do not include Big Cities u 70

TABLE A. 3
Individual Mathematics [tem Performance by CAEP-2) 17-Year-01 ${ }^{2}$. by Sex, Region, Shze of Community with CAEP-1 or NAEP-2 Results Where Applicable

*Open-ended item
**Reglons do not include Big Cities

ANNUAL REPORT SERIES BUREAU OF RESEARCH, PLANNING AND EVALUATION CONNECTICUT DEPARTMENT OF EDUCATION FISCAL YEAR 1980-1981

Report Series: Title	Series Number	.Year of Data	Projected Month Available
Data Acquỉsition Plan	BRPE-81-1	1980-1981	August 1980
Directory	BRPE-81-2	1980-1981	October 1980
CAEP - Science Report	BRPE-81-3A	1979-1980	November 1980
CAEP - Mathematics Report	BRPE-81-3B	1979-1980	November 1980
College Bound Sentors Report	BRPE-81-4	1979-1980	November 1980
Migrant Programs Evaluation Report	BRPE-81-5	1979-1980	December 1980
Compensatory Education Programs Evaluation Report Minority Pupilsand Staff in Connecticut Schools Report RESC Evaluation Report	BRPE-81-6 BRPE-81-7 BRPE-81-8	$1979-1980$ $1980-1981$	January 1981 January 1981
Condition of Education-Vol I Department Annual Report	BRPE-81-9	$\begin{aligned} & \text { Up to } \\ & \text { 1979-1980 } \end{aligned}$	February 1981
Condition of Education-Vol II Town/District Profiles Report	BRPE-81-10	up to 1979-1980	March 1981
Condition of Education-Vol [II Trends \& Perspectives	BRPE-81-11	1979-1980	February 1981
Programs for Neglected \& Delinquent Children Report	BRPE-81-12	1979-1980	March 1981
EERA Biennial Report	BRPE-81-13A	1979-1980	April 1981
EERA Summary \& Interpretation Report: 0ctober 1980 Results	BRPE-81-138	1980-1981	April 1981
School Staff Report	BRPE-81-14	1980-1981	May 1981
Early School Leavers Report	BRPE-81-15	1980-1981	May 1981
Non-Public School Report	(BRPE-82-15)	1981-1982	N. A.
Teacher Supply \& Demand Report	BRPT. -81-16	1980-1981	June 1981
nrollment Projections, pdate Report	(BRPE-82-16)	1981-1982	N. A.
eacher Evaluation Report	BRPE-81-17	1980-1981	June 1981
TB Report	8RPE-81-18	1980-1981	July 1981
raduate Follow-up Report	BRPE-81-19	1980-1981	July 1981
numeration Report	BRPE-81-20A	1980-1981	August 1981
ut-of-School Youth Report	BRPE-81-20B	1980-1981	August 1981

[^1]

ACKNOWLEDGMENTS

The 1979-80 Connecticut Assessment of Educational Progress (CAEP) in Mathematics was a joint fort by the Bureau of Research, Planning and Evaluation, the Bureau d Curriculum and Staff Development of the Connecticut State Department of Education (CSDE), and the Mathematics Education Center, School of Education, The University of Connecticut.

The assessment involved substantial effort by many people. Dr. George D. Kinkade and Mr. Steven Leinwand of CSDE were responsible for the overall direction of the assessment. Substantial contributions to the development of testing materials and the interpretation of results were provided by a Mathematics Advisory Committee of Connecticut educators. We extend sincere appreciation for their efforts and involvement to the committee members: Lynn Anderson, Thomas Andreoli, Linda Ball, Robert Carchman, Jean Carnaghan, Frank Levanti, Ann McKinney, and George Spooner.
We also wish to acknowledge the kind assistance of selected staff who participated in the planning, test development, administration and reporting phases of this mathematics assessment. Namely Dr. Elizabeth Sternberg, Mr. Douglas A. Rindone, Dr. Peter M. Prowda and Dr. Roger E. Richards.

At the University of Connecticut, implementation of the assessment was the responsibility of Dr. Robert A. Shaw and Dr. Martin S. Wolfe, Project Co-Directors, with professional contributions from Dr. Vincent J. Glennon, Dr. Harris Kahn, and Dr. Steven Owen.

This report was prepared by Dr. Martin Wolfe under the direction of the State Department of Education and the Connecticut Mathematics Advisory Committee. The Project Co-Directors wish to express their apprecia Mrs. Deanna Korner for efficient and unselfish secretarial assistạntur all phases of the project.

Pascal D. Forgione, Jr., Ph.D. Chief Bureau of Research, Planning and Evaluation

[^0]: －＂HALP－2 resporise categorles have been combined．

[^1]: *Projected Month Available is synonymous with the month that the report is to be submitted to the State Board for review and approval.
 ()Indicates that this report is produced in alternate years.

